MUNCH
A BUG

A Machine Language Debugger
For The Apple Il Family

By Wink Saville

i),m-,mf’{i/r /e e

4 u 5

RV AENTTY !(I—JIN(' "INC.

To re-enter MAB:
CALL %30467

MUNCH A BUG"

A Machine Language Debugger
For The Apple Il Family

By Wink Saville

INSTRUCTION
MANUAL

Copyright © 1984 by Roger Wagner
Publishing, Inc. All rights reserved.
This document, or the software
supplied with it, may not be
reproduced in any form or by any
means in whole or in part without
prior written consent of the copy-
right owner.

ISBN 0-927796-07-4

PRODUCED BY:

E PUISLISHII‘K.'.,E INC.

1050 Pioneer Way e Suite P @ El Cajon, CA 92020
Customer Service And Technical Support 619/442-0522

OUR GUARANTEE

This product carries the unconditional
guarantee of satisfaction or your
money back. Any product may be
returned to place of purchase for
complete refund or replacement
within thirty (30) days of purchase if
accompanied by the sales receipt or
other proof of purchase.

PRODUCT REFERENCE: MUNCH A BUG 2.5C0587

First, our legal stuff...

ROGER WAGNER PUBLISHING, INC.
CUSTOMER LICENSE AGREEMENT

IMPORTANT: The Roger Wagner Publishing, Inc. software
product that you have just received from Roger Wagner
Publishing, Inc., or one of its authorized dealers, is
provided to you subject to the Terms and Conditions of
this Software Customer License Agreement. Should you
decide that you cannot accept these Terms and Condi-
tions, then you must return your product with all docu-
mentation and this License marked "REFUSED" within the
30 day examination period following the receipt of the
product.

1. License. Roger Wagner Publishing, Inc. hereby
grants you upon your receipt of this product, a
nonexclusive license to use the enclosed Roger Wagner
Publishing, Inc. product subject to the terms and
restrictions set forth in this License Agreement.

2. Copyright. This software product, and its
documentation, is copyrighted by Roger Wagner Publish-
ing, Inc. You may not copy or otherwise reproduce the
product or any part of it except as expressly permitted
in this License.

3. Restrictions on Use and Transfer. The original and
any backup copies of this product are intended for your
personal use in connection with a single computer. You
may not distribute copies of, or any part of, this
product without the express written permission of
Roger Wagner Publishing, Inc.

LIMITATION ON WARRANTIES AND LIABILITY

ROGER WAGNER PUBLISHING, INC. AND THE PROGRAM AUTHOR
SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO PURCHASER
OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY
LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED
DIRECTLY OR INDIRECTLY BY THIS SOFTWARE, INCLUDING, BUT
NOT LIMITED TO ANY INTERRUPTION OF SERVICE, LOSS OF
BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL
DAMAGES RESULTING FROM THE USE OR OPERATION OF THIS
SOFTWARE. SOME STATES DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

Then Apple”s...

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER
EXPRESS OR IMPLIED, REGARDING THE ENCLOSED SOFTWARE
PACKAGE, 1ITS MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES
IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH
SPECIFIC LEGAL RIGHTS. - THERE MAY BE OTHER RIGHTS THAT
YOU MAY HAVE WHICH VARY FROM STATE TO STATE.

And now on with our program!

ABOUT THE AUTHOR

Wink Saville has a broad background in Computer
Science and Electrical Engineering and has been
responsible for many commercial software, hardware and
firmware projects. In addition to writing Munch A Bug,
Wink helped develop the AppliCard, and co—authored a
book on Assembly Language routines. He built his own
"KIM " computer from a kit in 1975 and three years later
got his first Apple. A native Californian, Wink lives
on the coast and enjoys both sailing and running on the
beaches. But his greatest joy is found in time spent

with his wife and children.

TABLE OF CONTENTS

INTRODUCTION. ¢« ¢ ¢« ¢ o o & o &«
CommandS. « « o« + o o o o o
Control Keys. « « « ¢ & o« o« &
Terms Used in this Manual .- .

M.A.B. COMMANDS

TRACING COMMANDS . « « « « - .

List (Disassemble Memory) (L)

.

Trace a 6502 Program (T).

Untrace a 6502 Program (No Display)

Next Instruction (Skip JSR”s) (N) .

Examine 6502 & M.A.B. Registers

Quitting M.A.B. (Q) « « « .« &
EXECUTION COMMANDS =«
Call a Subroutine (C)
"Go" (Breakpoint Setting) (G)
Pass Pointers (P) . . « . . .
MEMORY MANIPULATION COMMANDS .
Assemble 6502 Mnemonics (A) .

Dump Memory (D) . . « « .+ + .

Substitute Data into Memory (S)

Move Memory (M) . « «
Fill Memory with a Value (F).

Block Search (B). « « « « . &

(X)

.10

.12

.14

.20

.21

.22

.26

.27

.38

.39

.41

.43

.44

ADDITIONAL FEATURES. . . .

.

Convert Numbers: Hex/Dec (V). . « . . .

Freeze Display Window to Save Data (W).

Other Screen Displays (0) « « « « . . .

Connect/Delete Symbol Table (K)

Define, Display and Modify Symbols (Y).

M.A.B. TECHNICAL NOTES. . .
CONFIGURING M.A.B.
MAB AND THE DOUBLE TIME ROM
USE OF HANDY SYM.5000 . . .
MAB AND MERLIN. . . . « « «

MAB COMMANDS REFERENCE CARD

ii

«.BACK

INTRODUCTION

Munch-A-Bug (MAB) is a 6502 program which assists
the user in debugging 6502 assembly language programs
under the APPLE DOS operating system. MAB requires an
Apple II computer, 1 APPLE disk drive and the APPLE DOS
3.3 operating system.

YOUR DISKETTE

Make a back-up of the MAB disk using any good copy
program. Use only a back-up copy of MAB for debugging
purposes as faulty assembly language programs can easily
crash the system. To examine the files present on the
diskette, place the back-up diskette in the drive and
type 1in the word "CATALOG" and press RETURN. The
catalog should appear as follows:

DISK VOLUME 254 260
*A 005 HELLO
MUNCH-A-BUG

*B 054 MAB
*B 043 SMAB
*B 054 MAB.DO0OO

SUPPORTING FILES

*A 016 MAB CONFIGURE.A
*T 002 DOUBLETIME ROM PATCH

*B 002 TESTSYMBOLS
*B 002 HANDYSYM.5000
*B 002 MERLIN SYM EX.S

LANG. CARD FILES

*I 006 APPLESOFT
*B 050 FPBASIC

MAB and MAB.DOOO are the actual Munch-A-Bug program
files. SMAB is a short version of MAB that will give a
little more room for debugging programs with larger
memory requirements. The CONFIGURE file 1is used to
configure MAB to your particular situation in regards to
memory usage.

TESTSYMBOLS is a sample file used in some of the
examples within this manual. HANDYSYM.5000 is another
sample file of a few labels which may be useful when
using MAB“s mini-assembler to create your own object
code. The Language card files are included to allow
Munch-A-Bug to boot properly on any configuration of
Apple //e, Apple 1I+, or Apple II.

SPECIAL DOS FEATURES

Although you do not have to boot on the MAB disk-
ette to use the program, you may wish to boot on the
program disk so as to automatically install a special
disk operating system (DOS) with some helpful features.

Specifically, on each CATALOG of a diskette, you
will notice a number just to the right of the “DISK
VOLUME 254° message, similar to the “260” in the sample
directory listed earlier. This 1s the number of free
sectors remaining on the diskette being CATALOGed. A
normal Apple DOS 3.3 diskette has a maximum of 496 free
sectors available.

The second feature is an optional termination of the
CATALOG listing at any of the pauses which usually occur
when a directory has more files than can be displayed on
the screen at one time. When using the modified DOS
installed by the MAB diskette, pressing RETURN will
terminate the CATALOG 1listing at any pause. Pressing
any other key will continue it.

RUNNING Munch—A-Bug

MAB is installed and put in an active state in your
computer by placing the MAB diskette in the current
drive and typing in:

BRUN MAB

MAB will relocate itself between the DOS buffers,
display the NEXT and END of available memory, and then
prompt the user with an exclamation point "!". (Please
note: throughout this document all numeric values are in
hexadecimal).

MAB VER 2.6 (C) 1983 WINK SAVILLE
NEXT END

0800 7000

!

Now re-boot with PR#6

To use SMAB, a smaller version of MAB type in:
BRUN SMAB

This display should follow:

MAB VER 2.6 (C) 1983 WINK SAVILLE
NEXT END
0800 7900

You should notice the extra room. This extra
space however 1is at the expense of a few features.
Specifically, the assembler and symbol table commands
are no longer available.

If you have a language card, and wish to install
MAB on the card, you may type in:

BRUN MAB.DOOO
You should then see this display:

MAB VER 2.6 (C) 1983 WINK SAVILLE
NEXT END

0800 95FF
!

Note that wusing the language card version of MAB
will erase any language currently residing on the RAM
card. Specifically, 1f you have an Apple II Plus or an
Apple //e, Integer BASIC will no longer be available.
Likewise, if you have an Apple II with Integer BASIC on
the motherboard, Applesoft will be deleted from the RAM
card. This also applies to MERLIN if it is on the
language card.

The language card version also uses significantly
more zero page locations (28 contiguous bytes) and thus
may present certain difficulties. The main reason
MAB.DOOO 1is provided is for debugging machine language
programs that are independent of the usual Apple BASIC
ROMs and which are too large to allow the normal version
of MAB to be installed. See the section on configuring
MAB for more details on the specific zero page byte
usage of each version of MAB.

To make best use pof this program, it is suggested
that you first 1lightly read through the following
description of the overall syntax and various commands
available. Then go back and read the sections in which
you're interested in greater detail later. Each command
is provided with examples 1illustrating the details of
its operation.

In presenting Munch—-A-Bug, it is assumed that you
have at least some familiarity with machine language
programming, and presumably also a good assembler. It
is beyond the purposes of this package to provide an
in-depth tutorial on 6502 programming, or a complete
assembler.

If you are in need of either an assembler or more
information on machine 1language programming, Roger
Wagner Publishing highly recommends the following
products:

MERLIN - An extremely powerful 6502 macro assembler, yet
simply designed for easy use by even novice
programmers.

ASSEMBLY LINES: THE BOOK (by Roger Wagner)

This is an excellent starting point for anyone
wanting to improve their machine language pro-
gramming skills.

See the Roger Wagner Publishing Product Guide for
more information, or call or write us at the address and
phone number listed on the title page of this manual.

As with any tool, as you use Munch-A-Bug, you“ll
develop your own preferred techniques of use. We also
appreciate any comments you may wish to make as to ways
in which we can improve this product to better serve
you.

A)
B)
c)
D)
F)
G)
K)
L)
M)
N)
0)
P)
Q)
S)
)
u)
V)
W)
X)
Y)
3)

=>

(1)

(2)
(1)

(2)

(1)

M.A.B. COMMANDS

Assemble 6502 mnemonics.

Block search.

Call a subroutine.

Dump memory.

Fill memory with a value.

6502 Go with optional breakpoints.
Connect and delete symbol table.

List in 6502 assembly language mnemonics.
Move memory.

Execute Next instruction but do not trace JSR's.

Other screen display.

Pass pointers: display, modify or delete.
Quit MAB.

Substitute memory.

Trace a 6502 program.

Untrace a 6502 program (no display of steps).
Convert a number to decimal and hexadecimal.
Freeze the display Window to save data.

Examine, display, and modify the 6502 registers.

Symbol definition, display and modification.
Semi-colons are ignored and are treated as

comments. (when “EXEC ing in files for example).

Note that any legal DOS command can also be
directly executed at any time within MAB.

(1)
(2)

Not available in SMAB.
Not available when tracing code in ROM.

CONTROL KEYS

Control Q is used to stop the current output
operation. To resume normal operation, enter
a second Control-Q. (Please note: If the ESC
or RETURN key is pressed the output is stopped

and the current operation terminated.

Control Y is used to reenter MAB from the
APPLE II monitor. The control Y entry point
is at 3F8 and can also be used to reenter MAB
from BASIC by CALLing 1016. (Note: language

card version, 1ie. MAB.DOOO cannot be
entered after a Quit.)

Control Z 1is wused to permanently leave MAB
(zap). This is used to remove MAB from
between the DOS buffers. If MAB is left by a
route other then “Z, and can”t be re-entered,
then it is necessary to re—boot the system to
clear out the space between the DOS buffers.

TERMS USED IN THIS MANUAL

Items in {braces} are comments and are provided in
examples for explanatory purposes only. They are not to
be entered.

Items in <broken brackets> are optional.
Example:
D <"or”><ael><,ae2>

ae: 1s defined as an address expression with the
following forms:

number
number + number
number - number

Where “number” 1is a hexadecimal, decimal or a
symbol, optionally preceded by a plus or minus sign. An
exclamation point (!) is also treated as a number, in
that MAB will look at the last two bytes on the stack,
and assume they form a return address for an RTIS. See
the “G” and “T° commands for more information on this.
Hexadecimal is the default radix but may be preceded by
a dollar sign "$". Decimal 1is always preceded by a
percent sign (%). Symbols are preceded by a period.
For example:

3000 = 3000
3000+10 = 3010
3000-10 = 2FFO
=3000+-100 = CFOO
$3000+10 = 3010

%100 = 0064
-%10 = FFF6
.SYM1 = 5000
.SYM2 = 5010

.SYM1+.SYM2 = A010
.SYM2-10 = 5000
! = next address on the stack

It”"s easy to miss the notion that labels (including
the exclamation point), once defined, can be used in
place of numbers anywhere. The easiest way to learn
what can be used is to just try something out whenever
you think it might be possible. You“1ll probably be
pleasantly surprised!

NOTE: For purposes of clarity throughout this manual,
command characters are shown 'separated from their param-—
eters by a single space. This space is optional and may
be omitted when actually entering a command.

Next location:

This refers to the fact that some of the commands
save the last location wused. This will be the default
if the first address expression, "<ael>", 1is omitted.
Four commands have this feature: Dump, Assemble,
Substitute, and Disassemble. For example:

!D 1100,110F
1100: 00 00 00 00-00 00 00 00 .¢eevesn
1108: 00 00 00 00-00 00 00 00 «eevvwuss

'D ,111F
1110: 00 00 00 00-00 00 00 00 «ccecuen
1118: 00 00 00 00-00 00 00 00 .ccceuse

Strings and characters:

There are two methods of defining characters. The
first is a single quote (“). This defines the character
with bit 7 = 0. The second method is a double quote
("), which defines the character with bit 7 = 1. Four
commands allow the use of the quote: Dump, Assemble,
Substitute and Fill.

Examples:

!S 1100

1100 00 "STRING WITH BIT 7 =1
1115 00 “STRING WITH BIT 7 = 0
112A 00 .

'D “1100,112F

1100:
1108:
1110:
1118:
1120:
1128:

b3 D4 D2
C9 D4 C8
B7 A0 BD
49 4E 47
20 42 49
20 30 00

D "1100,112F

1100:
1108:
1110:
1118:
1120:
1128:

D3 D4 D2
C9 D4 C8
B7 AO BD
49 4E 47
20 42 49
20 30 00

C9-CE
A0-C2
AO-B1
20-57
54-20
00-00

C9-CE
A0-C2
AO-Bl
20-57
54-20
00-00

c7

53
49
37
00

A0
D4
54
54
20
00

A0
D4

54
20
00

D7
AO
42
48
3D
00

eeecs s

+es++.STR
ING WITH
BIT 7 =

Ocecnne

STRING W
ITH BIT

7 = 1STR
ING WITH
BIT 7 =
Ocecens

-10-

>> TRACING COMMANDS <<

This section contains the instructions and examples
needed to get started with MAB. The instructions for
tracing code are presented first since that is the main
reason for using MAB. It is suggested that the manual
first be read in its entirety, but it is possible to
start at the beginning of this section and proceed to
work through the examples. If a previously unmentioned
command is used to aid the example then either type what
is in the manual or reference the command description
elsewhere for clarificaton and then go back to the
example.

TRACING COMMANDS
List (Disassemble Memory) (L) « « « o « « o « « o 12
Trace a 6502 Program (T). « « « o « ¢« + o « o« o« « .14
Untrace a 6502 Program (No Display) (U) . . « « « .20
Next Instruction (Skip JSR"s) (N) . « « « « « « o 221
Examine 6502 & M.A.B. Registers (X) « « « « « o« o .22

Quitting MeAeB. (Q) ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o« o o o26

-11-

LIST (DISASSEMBLE TO 6502 MNEMONICS): L <ael><,ae2>

Disassemble memory starting at "ael"™ through “ae2”.
If "ael” is omitted then use the next location as the
starting address. If "ae2” is omitted then disassemble
one page. If the next byte to disassemble is not a 6502
opcode then a ??? will be printed. Note: At any time
the 1isting may be aborted by typing any key, also
control S and Q are operable.

This instruction is used to examine machine language
programs in memory. The advantages of this command over
the built-in “L" command in the Apple”s Monitor are:

1. Constants are translated into their ASCII character
equivalents where possible.

2. 1f a symbol table is connected (see the "K" and "Y"
commands of MAB), then referenced addresses with
labels will be displayed with their appropriate
names.

3. You can disassemble more or less than the usual 20
instructions which would otherwise be required by
the Monitor”s LIST command.

4. You can list code by directly using the label name
to specify the starting address, rather than having
to remember the exact address itself. For example,
L.ENTRY would be an acceptable use of MAB"s "L"
command .

Example:
First assemble some instructions at 1100.

1A 1100
1100 LDA #1
1102 LDA 10
1104 LDA 100
1107 LDA 10,X
1109 LDX 10,Y
110B LDA 100,X
110E LDA 100,Y
1111 LDA (10,X)
1113 LDA (10),Y

-12-

(Continued...)

1115 CLC

1116 A

SL

1117 ASL OA

1119 BCC 1100
111B JMP (200)
111E NOP

111F .

List 1100 through 1104.

IL 1100,1104
1100 A9 01
1102 A5 10
1104 AD 00 01

LDA #$01
LDA $10
LDA $0100

List from where we left off to 1113.

'L ,11
1107
1109
110B
110E
1111
1113

List one page.

111E may be

13
BS5
B6
BD
B9
Al
Bl

10
10
00 01
00 01
10
10

LDA $10,X
LDX $10,Y

LDA $0100,X
LDA $0100,Y
LDA ($10,X)
LDA ($10),Y

NOTE: The data following the NOP at

anything including valid instructions.

For our purposes,
“garbage" and therefore the disassembler prints ??7.

'L

1115
1116
1117
1119
111B
111E
111F
1120
1121
1122

18
0A
06
90
6C

XX
XX
XX
XX

oA

00 02

it will be assumed that the data is

CLC
ASL

ASL $0A
BCC $1100
JMP ($0200)
NOP

27?

222

722

27?

-13-

TRACE A 6502 PROGRAM: <->T <ael><,ae2>

Trace "ael” number of instructions starting at
location "ae2”. If "ael"” is omitted then trace one
instruction and go into a keyboard wait loop; If "T" is
pressed then trace the next instruction; If "U" then
untrace; If "N" then trace the next instruction skipping
JSRs; Pressing any other key will abort. If "ae2” is
omitted then begin at the current program counter. The
trace mode operates as follows, first the register and
next instruction are displayed, then MAB waits for a
keypress.

When a key is pressed, if the key is NOT a T, N or
U, tracing is terminated. If the key is a T (for
continue tracing. Key can also be a N or U - see later
sections), the next instruction is executed, the regi-
sters displayed with the new data, and the next instruc-
tion after that displayed while MAB again waits for
another keypress.

NOTE: The optional leading minus sign (-) turns off
checking for an abort key from the keyboard so MAB does
not hinder other keyboard checking from the user pro-
gram during an extended (multi-step) trace.

Here are some examples of the Trace command:
Assemble a few instructions at 1100.

'A 1100

1100 LDA CO00
1103 BPL 1100
1105 BIT CO10
1108 JMP 1100
110B.

Trace one instruction starting at location 1100. This
enters the keyboard loop.

1T,1100
—————— =00 X=00 Y=00 S=FF P=1100
LDA $C000
{Press a key other than T,U or N to exit loop.}

4=

Trace two instructions starting at location 1100.

1T2,1100
—————— A=00 X=00 Y=00 S=FF P=1100
LDA $C000

------ A=0D X=00 Y=00 S=FF P=1103

BPL $1100

Trace three instructions from the current 6502 program
counter

173

------ A=0D X=00 Y=00 S=FF P=1100
LDA $C000

------ A=0D X=00 Y=00 S=FF P=1103
BPL $1100

------ A=0D X=00 Y=00 S=FF P=1100
LDA $C000

Trace the next instructions one at a time.

IT

—————— A=0D X=00 Y=00 S=FF P=1103

BPL $1100 {PRESS “T”~ TO TRACE NEXT STEP}
—————— A=0D X=00 Y=00 S=FF P=1100

LDA $C000

{Press a key other than T,U or N to exit loop.}

Trace nine instructions but wuse a leading minus
sign to allow the program we are testing to get the next
character from the keyboard:

1-T9

------ A=0D X=00 Y=00 S=FF P=1100
LDA $C000

------ A=0D X=00 Y=00 S=FF P=1103
BPL $1100

------ =0D X=00 Y=00 S=FF P=1100 ; HIT "A" HERE
LDA $C000

), S A=C1 X=00 Y=00 S=FF P=1103
BPL $1100

N————- A=Cl X=00 Y=00 S=FF P=1105
BIT $CO10

N-———- A=Cl X=00 Y=00 S=FF P=1108
JMP $1100

N-——- A=Cl X=00 Y=00 S=FF P=1100
LDA $C000

------ A=41 X=00 Y=00 S=FF P=1103
BPL $1100

—————- A=41 X=00 Y=00 S=FF P=1100
LDA $C000

-1 5_

NOTE: Trace will NOT stop at the “RTS” at the end
of a routine if too many steps have been specified.

Example:

Assemble a short (2 step) routine at 1100

1A 1100
1100 LDA #0
1102 RTS

Trace THREE instructions
IT 3,1100

------ A=00 X=00 Y=00 S=FF P=1100
LDA #$00

==—=Z- A=00 X=00 Y=00 S=FF P=1102
RTS

--—-Z- A=00 X=00 Y=00 S=01 P=??? {unpredictable}
717?

One easy way to prevent “overruns” is to set a pass
pointer equal to zero at the RTS address. For example:

1P 1102
IT 3,1100

------ A=00 X=00 Y=00 S=FF P=1100
LDA #$00

0000 PASS 1102

---—Z—- A=00 X=00 Y=00 S=FF P=1102
RTS

If you are tracing code that calls subroutines, you
may want to skip tracing the JSR“s to subroutines that
are known to work. This would normally be done with the
- “N° command. If, however, you should accidentally enter
a subroutine, you can return to the code you were
executing immediately after the JSR by entering:

1G, !

-16-

The (second) exclamation mark tells MAB to execute
code starting at the current address, without tracing,
and to break at whatever address is currently on the
stack as a return address. When the registers are
displayed, resume tracing with the usual "T" keypress.

Trace, Go, and pass pointers can also be combined
to directly trace code called from BASIC programs.

For example, with MAB up and running, enter this short
program at 300:

1A 300
300 LDA #$01
302 RTS

Then set a pass pointer at 300:
'P 300 " {-P turns pass pointers off}

Then exit MAB with a ;Q’ (for quit) and enter the
following Applesoft program:

10 HOME: INPUT"YOUR NAME?";I$
20 LIST : PRINT

30 CALL 768: GET A$: PRINT A$
40 IF A$ <> "X" THEN 30

And now RUN to see what happens. After the screen
clears, you should be able to enter your name. As soon
as you press RETURN, the program should list itself and
do a CALL to the routine at 300. Since a pass pointer
was set there, MAB will instantly pop up in the trace
mode, with the MAB prompt. For now, enter just “G” to
verify that you can immediately return to the program.
If you press any key other than “X° in the BASIC
program, each CALL 768 will trigger MAB”s pass pointer.

When the pass pointer break occurs, you could also
trace any portion of the code you desired, although in
this case that would be rather limited. Also of
interest 1is the fact that you can literally trace
Applesoft by continuing to trace past the RTS.

Experiment with the different combinations of Go,
Trace, Untrace, and pass pointers to see just what kinds
of things are possible. MAB is excellent for debugging
machine language routines called from BASIC. Remember
to use “G” to resume normal program operation from the
Trace mode at any time.

-17-

ROUTINE MACHINE is an excellent example of the
value in interfacing machine language routines to Apple-
soft. Basically, ROUTINE MACHINE is a pre-written
library of machine language routines for programmers of
all skill levels to use. It makes extensive use of
routines called from BASIC. See the current Roger
Wagner Publishing Product Guide for more information on
this product.

The trace function 1is, for most people, the most
used portion of MAB. It is through the use of this
particular command that you will debug most programs.
The idea behind debugging wutilities such as MAB is to
give the programmer the ability to watch each individual
step of a machine language program. This is so that you
can confirm that each step of your program does in fact
do what you thought it was supposed to.

For example, consider this simple program to read
the game controllers. The paddles on the Apple are
read by loading the X Register with the value for the
paddle you wish to read, followed by a JSR to $FB1E, a
routine, cleverly enough, called PREAD (for Paddle
READ). The result, a value between $00 and $FF, is
returned in the Y Register. So that we can tell what
the paddle is reading, we”ll then transfer the contents
of the Y register to the Accumulator, followed by a JSR
COUT. You may be aware that COUT ($FDED) is the routine
used by the Apple to print characters to the screen.
When the program 1is run, we would expect different
characters to be printed to the screen depending on the
paddle position.

Suppose we had entered the following routine to
read paddle #0:

300:A6 02 LDX $01 {set X = $01}
302:20 1E FB JSR $FBlE {read paddle}
305:98 TYA {put in acc.}
306:20 ED FD JSR S$FDED {print char.}
309:4C 00 03 JMP $300 {go back again}

If you enter this as an example, be SURE to enter it
EXACTLY as shown!

-18-

Now, suppose when you run the program, all that
appears on the screen are inverse "@" characters,
regardless of the paddle position. (Rembember paddle
#1 is actually your second paddle!) Something is wrong
somewhere, but how to find it? The answer (of course!)
is with MAB. With MAB installed, trace through the
program to examine each step.

To do this, the first command will be:
!T,300
MAB should display:

===== A=00 X=00 Y=00 S=FF P=0300
LDX '$01

This shows you the registers, and MAB now waits for
a keypress to begin tracing through your program one
step at a time. Press the °T” key once to show the
next step. MAB should now display:

————— A=00 X=4C Y=00 S=FF P=0300
JSR S$FBLE

Upon examining the X Register, we notice that it
has been set to “$4C”, rather than “$01° as we had
intended. Why? Aha! Looking at the first
instruction, you can see that we omitted the immediate
“#~ character. Instead of loading X with the constant
$01, we are actually loading the X Register with the
CONTENTS of 1location $01! Now, using the “A” (for
assemble) command of MAB, re-write the first line to
read:

300:A2 02 LDX #$01 {set X = $01}

(Remember that to use the assembler, you need only
to enter:

1300: LDX #$01
1301: {RETURN alone to exit}

Now when the program is run, it should behave as
expected.

MAB will be of its greatest value when you are SURE
the program should be working a certain way and it
isn“t by allowing you to see what you REALLY wrote in
the program!

-19-

UNTRACE A 6502 PROGRAM: <-> U <ael><,ae2>

Untrace is identical to Trace except that nothing
is displayed during execution. This provides a means of
still controlling the execution, but it executes much
faster than Trace. Untrace may be aborted at any time
by pressing any key. Upon termination of the untrace
command, the registers will be displayed. This command
is wuseful for locating the general address range and
environmental conditions of an infinite loop.

The optional leading minus sign (-) turns off the
feature of checking for an abort key from the keyboard
so that MAB does not hinder other input code. See the
section on MAB“s trace command for wuse of the minus
sign.

Example:

Assuming the same code as in Trace above, execute
five instructions beginning at $1100.

U 5,1100
------ A=0D X=00 Y=00 S=FF P=1100
LDA $C000

NOTE: Untrace will not stop at the “RTS” at the end
of a routine if too many steps have been specified. (See
"Trace"). Again, use of a pass-pointer at the RTS will
prevent an overrun of the RTS.

Example:

Assemble a short (2 step) routine at 1100

fA 1100

1100 LDA #0

1102 RTS
Untrace THREE instructions
U 3,1100

______ {unpredictable data here}

=20~

NEXT INSTRUCTION: N <ael><,ae2>

This is the same as the Trace command except that
subroutines are not traced. This is very useful when
debugging routines which call subroutines and you know
that the subroutine is operating correctly. An example
might be when calling operating system routines.

Example:

Assemble a routine which will output a character to
the screen via the monitor.

!A 1000

1000 LDA #"A"
1002 JSR FDED
1005 JMP 1000
1008 .

Use the N command to debug 1it:

N 6,1000 {START AT 1000}
—————— A=00 X=00 Y=00 S=FF P=1000
LDA #5Cl "A

N A=Cl X=00 Y=00 S=FF P=1002
JSR $FDED {CALL THE SUBROUTINE}
A -V--ZC A=Cl X=00 Y=00 S=FF P=1005
JMP $1000

-V--ZC A=Cl X=00 Y=00 S=FF P=1000
LDA #$CL "A
NV---C A=Cl X=00 Y=00 S=FF P=1002

JSR $FDED
A -V--ZC A=Cl X=00 Y=00 S=FF P=1005
JMP $1000

When tracing code that you expect will require the
“N” command to skip a JSR, use the N from the beginning,
instead of “T” (for Trace). They are identical, except
for "N”s ability to skip JSR“s. You can also use the
‘W (to freeze the Window) command to freeze a portion
of the 1listing on the screen to see what the next
instruction to be executed will be.

-21-

EXAMINE 6502 REGISTERS: X <reg>

Display or change the 6502 registers and the M.A.B.
control registers. If "reg” is omitted then all of the
6502 registers are displayed. The following 1is the
definition of the registers.

A Accumulator
F Flags
Bit Number:

7 6 5 4 3 2 1 0

' .

! ! !

! ! ->Carry 1 = True

' - >Zero 1 = result zero
————————— >IRQ disable 1 = Disable
————————————— >Decimal mode 1 = True
DBRK command 1 = True
>Unused

Y0verflow 1 = True
>Negative 1 = Negative

- G b b b tem

s b tem s b= s b
tm tm b tem e tem sem

e e s b s b tm bem o

X X index register

Y Y index register

S Stack register

P Program counter

M This 1is a pseudo register which contains
the last position of where M.A.B. may use
the 6502 stack page at 100. The default
value is 2F and may be changed but it
should not be less than 2F.

C This is a pseudo register which defines the

size of the terminal screen. If C=40 then
a 40 column screen is assumed, if C=80 then
a 80 column screen is assumed. This will
effect the Dump command, and the 6502
register display.

-22-

D This 1is a pseudo register which defines if
the symbols in the symbol table with non-
zero length bytes will be displayed when
registers are dumped. This is either "T"
true or "F"” false. This is a very powerful
option which allows the user a close watch
on specific variables during tracing and
pass pointer operations.

Examples:

Display all of the registers.

—————— A=FF X=00 Y=00 S=FF P=1100
LDA #cCl

Change register A to 1 and register P to 1200
then display the registers.

1XA
A=00<1

'Xp
P=1100<1200

------ A=01 X=00 Y=00 S=FF P=1200

The stack pointer, “S” is unusual in that the “XS~
command is also used to examine the current stack
contents. Suppose that this program has just been
traced with the command T3,1100:

1100 LDA #01
1102 PHA
1103 PHA
1104 RTS

You can stop at 1104 and examine the stack by
entering:

1XS

O1lFD: xx 01 01
S=FDK??

-23-

Notice that the stack pointer always points to one
byte PAST the last data byte on the stack. We can see
the two “01° pushed onto the stack by the program. The
contents of 1FD will be arbitrary. You can restore the
stack to FF by entering FF and pressing RETURN:

S=FD<FF
X
—————— A=01 X=00 Y=00 S=FF P=1104

To protect its own stack area, MAB will prevent the
stack pointer from staying in the range O0-2F (or
whatever "M~ has been set to) by restoring the stack to
FF whenever this occurs. This check is done each time

the MAB prompt is presented.

Change the Column register to 80 and display the
registers.

1XC

C=40<80

—————— A=01 X=00 Y=00 S=FF P=1200 1???
Change the Column register back to 40.

1XC
C=80<40

Change the Display register to TRUE.

1XD
D=F<T

Change the Display register back to FALSE.

XD
D=T<F

Changing the flags is a little different. Each bit
is controlled by its corresponding name <N,V,D,I,Z,C>.
To turn a flag on simply type its name; to turn it off
type a minus sign (-) followed by the name. To turn all
of the flags off enter only a minus sign.

-24—

Turn

Turn

Turn

Turn

Turn

on carry flag

on the N flag

'XF
-=—-ZC<N

off the C flag

IXF
N-—-2C<-C

off all the flags

'XF
N---2C<-

-25-

QUIT M.A.B.: Q

This command sets the pass pointers (see the P
command), prints an address to Call to re-enter MAB and
then jumps to APPLE DOS via a jump to 3DO. The user may
also reenter MAB by calling the control Y jump instruc-—
tion at 3F8, which 1is 1016 decimal. This 1is how
assembly language routines which are called by one of
the BASICs may be debugged.

NOTE: Leaving MAB.DOOO' with this command is the same as
leaving via the Control-Z command (Permanently). Do not
attempt to re-enter MAB as the low memory locations are
altered. You MUST BRUN MAB.DOOO to restart it.

Example:

Return to APPLESOFT using the Q command

'Q
TO REENTER MAB -- CALL %30467

]
Return to MAB by calling 30467

]CALL 30467

ZAP M.A.B.: "Z

This command is for the final exit from MAB to
return the system to normal. Executing this command
will reset the break vector and remove MAB from between
the DOS buffers.

Example:
Return to APPLESOFT via the Control-Z command
! {Type in CTRL-Z}

EXIT PERMANENTLY (Y/N)? Y

]

-26-

>> EXECUTION COMMANDS <<

The following instructions are wuseful in calling a
program when only part of it needs to be examined. This
makes it possible to only trace certain sections of
code, while the rest of the program runs at full speed.
This, for example, allows an initalization routine to
set up everything and drop into MAB when tracing is
desired.

EXECUTION COMMANDS
Call a Subroutine « « « « o « « o« « o o o o o o o o 28
"Go" (Breakpoint Setting) (G) . « « « « ¢« &+ « o +» « 29

Pass Pointers (P) « « « « o o o o o o o o o o« « o » 31

-27-

CALL SUBROUTINE: C <ae>

This command calls a subroutine which begins at
"ae". The subroutine should terminate with an RTS
instruction to return control to MAB. Note that pass
pointers are not checked during a call.

This may be used to add functions to MAB or for
executing a particular user subroutine.

Example:

Place a subroutine at $1100 to increment location
0.

'A 1100

1100 INC O
1102 BNE 1106
1104 INC 1
1106 RTS

1109 .

Now at any time this subroutine could be called.
Here we will zero locations O and 1, call the subroutine
twice at $1100, and then display the contents of O which
now contains a 2.

1S 0
0000 FF 0 {ZERO LOCATION 0}
0001 FF O {ZERO LOCATION 1}

0002 . {END SUBSTITUTION}

!C 1100 {CALL THE SUBROUTINE}

!C 1100 {CALL IT AGAIN}

!1s 0 {DISPLAY CONTENTS OF LOCATION O}
0000 02 .

Call the Monitor HOME routine (FC58)

IC FC58
! {screen clears and homes cursor}

If you have connected the HANDYSYM.5000 table (see
“K” cmd), use a label instead:

!C.HOME
! {screen clears and homes cursor}

-28~-

GO: G ael<,ae2><,ae3><,ae4>

Execute a 6502 program starting at “ael” with 3
optional (and temporary) breakpoints "ae2”, "

ae3”, and
"ae4”. If "ael"” 1is omitted then the current 6502
program counter is used as the starting address.

Multiple breakpoints are used when you may not be
entirely sure which part of the program will eventually
be executed, as might be the case when branch instruc-
tions are involved. ' THE BREAKPOINTS ARE ALL CLEARED
IMMEDIATELY UPON RETURN OF THE PROMPT. For “permanent”
breakpoints, pass pointers with counters set to zero are
used.

A 6502 BRK instruction is used for the breakpoints.
M.A.B. regains control when a BRK instruction is exe-
cuted or a pass pointer with a zero count is reached.
Because ROM cannot be rewritten with breakpoints, this
command may not function properly if used on routines
residing in ROM assigned memory (usually $COOO-FFFF).
The Trace and Untrace functions will work properly even
in ROM though, so you may wish to use these instead.

Example:
Place a "short"” 6502 routine at 1100.

!A 1100

1100 LbA #1
1102 LDY #2
1104 LDX #3
1106 JMP 1100
1109 .

Go at 1100 and set breakpoints at 1102 and 1106.
1G 1100,1102,1106
—————— A=01 X=00 Y=00 S=FF P=1102
LDY #$02

Execute at current location and set a breakpoint at
1106.

16,1106

------ A=01 X=03 Y=02 S=FF P=1106
JMP $1100

-29-

The command phrase “G,!” 1s also extremely useful
for finishing out a subroutine you“re in, and returning
to the first instruction after the JSR that called the
subroutine. See the Trace command for an example of
this, and the advantages of combining the Go, Trace and
Pass Pointer options.

-30-

PASS POINTERS: <->P <ae<,cnt>> or P ae,@subroutine

This command allows you to define, display, and
modify pass pointers. A pass pointer is similar to a
break point as used in the Go command except that pass
pointers have a count field associated with them. They
are also permanent to the extent that they remain in
effect wuntil you specifically clear them. When a pass
pointer is defined you are telling MAB to set a break
point at this location but only stop if the count field
becomes zero. This "is helpful when debugging sub-
routines which are called from BASIC or other assembly
language code.

Note that pass pointers cannot be set to addresses
within ROM assigned memory, such as in Applesoft or
Integer. They CAN be wused if the memory area corre-
sponds to a RAM card.

The second form of the command, Pae,@subroutine,
allows the wuser to define a subroutine which controls
the stopping of the program at a pass point. Each time
the program passes this type of pass pointer the
subroutine is called. If the subroutine wants the
debugger to stop execution it makes the Z flag 1; if it
does not want MAB to stop, it makes the Z flag 0. Upon
entry to the subroutine the registers A,P,X, and Y
contain the values the program being debugged has. Also
the APPLE register save area in page zero contains a
copy of them. The APPLE register save area is:

3A,3B=Program Counter, 45=A, 46=X, 47=Y, 48=P, 49=S.
The following are valid P commands:

P A "P" with no parameters displays all
of the currently defined pass pointers
followed by the current count

-P This deletes all pass pointers

P ae This defines a pass pointer at the
address expression "ae” with a count
field of 0. This is more or less
equivalent to the conventional notion
of a breakpoint, in that MAB will
always stop here and display registers.

-31-

-P ae

P ae,cnt

P ae,@routine

Example:

This deletes the pass pointer at the
address expression “ae”.

This defines a pass pointer at the
address expression "ae” with a count
field of "cnt”. MAB will display all
registers on each pass, but will not
stop until the counter reaches “07.

This defines a pass pointer at the
address expression "ae” with a
subroutine at an address given by
"routine”.

Define a main program at 1100 which loads register A
with O and then calls a subroutine at 1200 three times

and then stops.

We will set a pass pointer at 1200

with a count of 5 and execute the main program.

Define the main program and the subroutine:

1A 1100

1100 LDA #0
1102 JSR 1200
1105 cMP #03
1107 BNE 1102
1109 RTS

1104 .

1A 1200

1200 TAX
1201 INX
1202 TXA
1203 RTS

1204 .

Define the

pass pointer at 1200, and another at

1109 to prevent an “overrun” of the last RTS at

1109.

1P 1200,5

!P 1109

-32-

Display the pass pointers

P
0005 1200
0000 1109

Execute the main program and watch the results

1G 1100

0005 PASS 1200

—-——-Z~ A=00 X=03 Y=00 S=FD P=1200
TAX

0004 PASS 1200

Nt A=01 X=01 Y=00 S=FD P=1200
TAX

0003 PASS 1200

N————- A=02 X=02 Y=00 S=FD P=1200
TAX

0000 PASS 1109

----ZC A=03 Z=03 Y=00 S=FF P=1109
RTS

Display the pass pointers and notice that 1200 is
now 2

P
0002 1200
0000 1109

Now call it again, and notice that this time it
stops at 1200, when the first pass pointer reaches
0”.

!1G 1100

0002 PASS 1200

—-—-—ZC A=00 X=03 Y=00 S=FD P=1200
TAX

0001 PASS 1200

N A=01 X=01 Y=00 S=FD P=1200
TAX

0000 PASS 1200

N A=02 X=02 Y=00 S=FD P=1200

-33-

We will now change the pass pointer at 1200 from
being a counting type pass pointer to a subroutine
type pass pointer. We“ll also modify the routine
so that it loops 255 times. It will now stop when
register A becomes 81.

1A 1300 {define the subroutine}
{enters with value in acc.}

1300 cMP #81 {will return w/ Z clr until
1302 RTS acc. = #$81}

1303 .
1P1200,@1300 {define the pass pointer}
1p {display the pass pointers}
@1300 1200

0000 1109
1A1105 {modify routine}

1105 CMP #FF {will loop FF times}

1107 .
161100 {execute}
@1300 PASS 1200

N————— A=81 X=81 Y=00 S=FB P=1200

TAX

In this case, it was the fact that the accumulator
was equal to a specific value that triggered the pass
pointer. You can also test in a similar manner for the
contents of any other register or memory location:

1A 1300

1300 CPX #02 {test for X
1302 RTS

1303 .

#02}

1A 1300

1300 CPY #02 {test for Y
1302 RTS

1303 .

#02}

-34-

1A 1300
1300 LDA
1303 CMP
1305 RTS
1306 .

You can also test

'A 1300
1300 CPX
1302 BNE
1304 CpY
1306 RTS
1307 .

Or...

1A 1300
1300 CPX
1302 BNE
1304 RTS
1305 CpPY
1307 RTS
1308 .

1000 {tests for location 1000 = #02}
#02

{acc automatically restored

by MAB before returning...}

for a combination of conditions

#02 {tests for X=2 AND Y=FF!}
1306,
#FF

#02 {tests for X=$02 OR Y=$FF}
1305

#fFF

We will now delete all of the pass pointers.

!-P

'P {See what”s left...}

{no pointers left}

-35-

Downloaded from www.Apple2Online.com

-36-

>> MEMORY MANIPULATION COMMANDS <<

These commands allow the user to examine and make
changes to memory. These are useful commands to see how
things are before and after a machine language program
is run. They are also useful for just snooping around
memory. These 1instructions include the ability to
assemble 6502 mnemonics, dump, substitute, move, fill,
- and block search memory.

MEMORY MANIPULATION COMMANDS
Assemble 6502 Mnemonics (A) « + ¢ « « o o « « o« o+ 38

Dump Memory (D) « « « « « « o o o« o o o o o o o « 39

"
>
£

Substitute Data into Memory (S)
Move Memory (M) « + « « ¢ o & o o o o o o o o o o 42

Fill Memory with a Value (F). . 43

Block Search (B)e o + ¢ o o o o o« o o o « o o« o« o« J4b4

-37-

ASSEMBLE 6502 MNEMONICS: A <ae>

Assemble in 6502 mnemonics beginning at "ae". If
"ae" is omitted, then the next location is wused. You
will be prompted with an address and then MAB will wait
for a valid mnemonic and operand. To leave the assembly
mode, type a period (.), or press RETURN alone.

nwan -~

By typing a character (shift-N = “~ on the Apple
I1I, shift-6 = ~ on the Apple //e) you may back up to,
and thus correct, the previous instruction. (Note that
for a given entry, shift-N (*) only works the first time
it“s wused. That is to say that subsequent entries of a
shift-N will not decrement the address counter any
further.)

Examples:
'A 1100
1100 LDA #1 ; immediate addressing
1102 LDA 10 s;page zero absolute
1104 LDA 100 ;absolute
1107 LDA 10,X ;page zero indexed by X
1109 LDX 10,Y ;page zero indexed by Y
110C LDA 100,X ;yindexed by X
110F LDA 100,Y ;indexed by Y
1112 LDA (10,X) syindirect by X
1114 LDA (10),Y sindirect by Y
1116 CLC simplied
1117 ASL sregister A
1118 ASL A s;location $0A
111A BCC 1100 ;relative
111C JMP (200) sindirect
111F NOP
1120 = ;backup one instruction
111F LDA #"A s;character with bit 7 =1
1121 LDA #°A ;character with bit 7 = 0
1123 . sexit

Also acceptable:
1102 LDA .LABEL
or
1114 LDA (.LABEL),Y

When “LABEL” has be defined using the “K“,”KM”, or °Y°
commands .

-38-

DUMP MEMORY: D <"or”><ael><,ae2>

Dump memory as Hex bytes and ASCII characters
beginning at "ael” through "ae2". If a double quote
follows the D, then bit 7 is ignored when displaying the
ASCII. If a single quote or no quote follows the D, all
bits are used to determine a valid ASCII character. 1If
"ael” is omitted then the next location is used as the
starting address. If "ae2” is omitted then one page of
memory is dumped. Note: At any time the dump may be
aborted by typing any key, also control S and Q are
operable.

Example:

Place 2 strings in memory, the first with bit 7 = 1
the second with bit 7 = 0.

!S 1100
1100 00 "STRING WITH BIT 7 = 1
1115 00 “STRING WITH BIT 7 = O

112A 00 .

Dump from 1100 through 112F with bit 7 ignored for
ASCII dump.

'D 1100,112F
1100: D3 D4 D2 C9-CE C7 AO D7 STRING W
1108: C9 D4 C8 AO-C2 C9 D4 AO ITH BIT

1110: B7 AO BD AO-Bl 53 54 42 7 = 1STR
1118: 49 4E 47 20-57 49 54 48 ING WITH
1120: 20 42 49 54-20 37 20 3D BIT 7 =
1128: 20 30 00 00-00 00 00 00 O......

Dump from 1100 through 112F with bit 7 ignored for
ASCII dump.

D "1100,112F

1100: D3 D4 D2 C9-CE C7 AO D7 STRING W
1108: C9 D4 C8 AO-C2 C9 D4 A0 ITH BIT

1110: B7 AO BD AO-Bl 53 54 42 7 = 1STR
1118: 49 4E 47 20-57 49 54 48 ING WITH
1120: 20 42 49 54-20 37 20 3D BIT 7 =
1128: 20 30 00 00-00 00 00 00 O......

-39~

Dump from 1100 through 112F

dump.

ID “1100,112F

1100:
1108:
1110:
1118:
1120:
1128:

D3
c9
B7
49
20
20

D4
D4
A0
4E
42
30

Dump from where

114F.

1D ,114F
1130: 00 00
1138: 00 00
1140: 00 00
1148: 00 00

D2 C9-CE C7
C8 A0-C2 C9
BD AO-Bl 53
47 20-57 49
49 54-20 37
00 00-00 00

with bit 7 used for ASCIIL

A0
D4
54
54
20
00

the 'previous

00 00-00 00
00 00-00 00
00 00-00 00
00 00-00 00

-40-

00
00
00
00

D7 ceeeenne
AD tceeceee
42STR
48 ING WITH
3D BIT 7 =
00 O..ccne

dump stopped through

00 coveeees
00 ceceenns
00 ceveeens
00 coeenens

SUBSTITUTE MEMORY: S <ae>

Change memory starting at location "ae". If "ae"
is omitted then use the next location. The user will be
prompted with the next address and its current value.
Five operations are allowed:

1. If the value is a PERIOD, EXIT substitute mode.

A

2. If the value is a character, BACK UP one byte.

3. If the value is a NUMBER, CHANGE the value and
advance next location.

4, If the value begins with a DOUBLE QUOTE ("), enter
a string until a carriage return is encountered
and BIT 7 of each character will be SET (BIT 7 =
1).

5. 1If the value begins with a SINGLE QUOTE (”), enter
a string a string until a carriage return is
encountered and BIT 7 of each character will be
CLEAR (BIT 7 = 0).

6. If NO ENTRY then ADVANCE to the next location.

Examples:
1S 3000 {substitute starting at 3000}
3000 00 {do not change advance to text}
3001 10 B {change to OB}
3002 20 * {backup}

3001 OB "A STRING 7=1 {change to string, bit 7 = 1}
300D 23 “A STRING 7=0 {change to string, bit 7 = 0}

3019 30 23 {change to 23}

301A 45 24" {change to 24 and back up}
3019 23 21 {change to 21}

301A 24 . {exit}

-41-

MOVE MEMORY: M ael,ae2,ae3

Move memory starting at "ael” through "ae2" to
"ae3". Move may be aborted by pressing any key.

Example:
First fill 1100 through 111F with “A”.
'F 1100,111F,"A
Now move 1100 through 111F to 3000.
M 1100,111F,3000
Dump 3000 through 301F to verify move.
!D 3000,301F
3000: 41 41 41 41-41 41 41 41 AAAAAAAA
3008: 41 41 41 41-41 41 41 41 AAAAAAAA
3010: 41 41 41 41-41 41 41 41 AAAAAAAA
3018: 41 41 41 41-41 41 41 41 AAAAAAAA
NOTE: Unlike the Apple Monitor move routine, this
routine will properly move a block of memory "up” in

memory when the destination block overlaps the source
block.

~42-

FILL MEMORY WITH A VALUE: F ael,ae2,v

Fill memory starting at "ael"™ through "ae2" with
the byte value v. The value, v, must be a byte and may
be either a numeric or a character. Fill may be aborted
by pressing any key.

Example:
Fill 1100 through 110F with the value of A.
!F 1100,110F,A

Fill 1110 through 111F with the character ‘A~
(bit 7 = 0)

!F 1110,111F,"A

Fill 1120 through 112F with the character "A"
(bit 7 = 1)

'F 1120,112F,"A

Dump to show result:
'D "1100,112F {bit 7 ignored}

1100: OA OA OA 0A-0A OA OA OA ...cc.nn
1108: 0OA OA OA OA-OA OA OA OA ..eovnn
1110: 41 41 41 41-41 41 41 41 AAAAAAAA
1118: 41 41 41 41-41 41 41 41 AAAAAAAA
1120: C1 C1 Cl C1-Cl Cl1 Cl Cl AAAAAAAA
1128: Cl Cl Cl C1-Cl Cl Cl Cl AAAAAAAA

Dump to show result of using a single quote:

'D “1100,112F {only bit 7=0 shown as ASCII}

1100: OA OA OA OA-0OA OA OA OA ...cvvne
1108: 0A OA OA OA-OA OA OA OA ..evvnee
1110: 41 41 41 41-41 41 41 41 AAAAAAAA
1118: 41 41 41 41-41 41 41 41 AAAAAAAA
1120: C1 C1 C1 C1-C1 C1 CL Cl cccvenns
1128: C1 C1 C1 C1-C1 C1 C1 Cl +ceucnuns

-43-

BLOCK SEARCH: B ael,ae2,ae3,ae4

This command is used to search for a pattern of
data in memory. The address pair ael,ae2 defines the
range in memory to search, while the pair ae3,ae4
defines the beginning and ending addresses of the data
buffer that holds the search data.

As an example let”s first search for a string.
First, use the substitute command to place the string in
the memory block to be searched.

'S 1100

1100 13 "TEST
1104 00 .

'S 1200
1200 85 "TEST
1204 14 .
Now place "TEST"” in the search buffer:

!S 300 D4 "TEST
304 00 .

Perform the block search:

!B 1100,1210,300,303

1100

1200

Now for a second example. Search for three nulls:
'F 1100,1102,0 {Fill with three nulls}
!F 1180,1182,0

!F 300,302,0

Now perform the block search:

1B1100,1200,300,302

1100
1180

~44—

>> ADDITIONAL FEATURES <<

This last group of commands includes all the handy
things that don“t fit into the previous catagories.
Imagine using a symbol table in the tracing of a
program. The HEX-DEC converter is nice when dealing
with BASIC. Also freezing the display window to keep
track of part of a program is invaluable at times.

ADDITIONAL FEATURES
Convert Numbers: Hex/Dec (V). « « « « « « « « « . W45
Freeze Display Window to Save Data (W).47
Other Screen Displays (0) . . « « « « « « « « . . .49
Connect/Delete Symbol Table (K) « . « . . .50

Define, Display and Modify Symbols (Y).56

-45~

CONVERT A NUMBER TO HEXADECIMAL AND DECIMAL: V ae

Convert the number "ae"” to hexadecimal and decimal.
This is done by entering the number following the "V~
command. Numbers are assumed to be in hexadecimal form
unless preceded by a “%° sign, which indicates a
decimal number.

In addition, numeric expressions consisting of
various numbers and labels are allowed.

Example:
V100
$0100 %256

1v-100
$FFO0 -%256

1VZ100
$0064 %100

1V-%256
$FFO0 -%256

1V-%253+-%10
$FEF9 -%263

!V.HOME-8
$FC50 -%984

-46-

FREEZE APPLE DISPLAY WINDOW: W <ae>

Pressing the "W~ key will freeze the top 12 lines
of the standard Apple 40 column screen. This is wuseful
for preserving various kinds of data on the screen,
while you continue to trace a subroutine.

“W” acts as a "toggle”, 1in that the first time you
use it, it will freeze the top of the screen. The
second time you press “W”, the screen scrolling will be
restored to normal. The window is protected by modify-
ing the contents of location $22, (WNDTOP = 34 decimal).

For example, to save part of a listing for future
reference while later tracing it:

First, list the range with the “L° command

'L 1100
1100 A9 00 LDA #500

1102 A0 00 LDY #3500

1104 A2 00 LDX #$00

1106 20 0C 10 JSR $100C
1109 DO FB BNE $1106
1108 00 BRK

110c 18 CLC

110D 69 01 ADC #3501

110F C8 INY

1110 E8 INX

Now, you can either: 1) press RETURN five times to
advance the text to the top of the screen, and then
press “W”, or, 2) Enter C.HOME if you“ve got HANDYSYM
installed (or CFC58 if you don”t) BEFORE listing the
range, (to clear the screen and home the cursor), and
then press “W”. After pressing “W”, future text output
will still continue to scroll out of the current window.

The other use for “W” 1is to freeze one or more
program step display lines. This 1is useful if you want
to remember the 6502 registers at one point in a
program, for later reference as you continue to trace
the listing. With the “W” command, you can freeze the
top of the screen with the register display on 1it, and
then compare all future steps against the frozen dis-

play.

-47-

You can also specify a value 1in the range 0-16
(0-22 decimal), which will freeze exactly that number of
lines on the screen. MAB will also automatically adjust
the number of lines output for the Dump, List, etc.
commands accordingly. This can be useful even on 80
column cards where you might wish to limit the number of
lines output at a time per command.

-48-

OTHER SCREEN DISPLAY CONTROL: O <L><H><G><T><M><F><1><2>

This command allows control of the Apple II screen.
Any number of the command characters may be used and in
any order. The following shows what each of the
characters do:
L Sets the graphics mode to Low Resolution graphics.
H Sets the graphics mode to High Resolution graphics.
G Sets the screen mode to Graphics display.

T Sets the screen mode to Text display.

M Sets the graphics mode to Mixed (text/gr) screen
display.

F Sets the graphics mode to Full screen display.
1 Sets the page display to Page 1.

2 Sets the page display to Page 2.

Example:
!OLGM1

Sets the screen to low resolution graphics, mixed
text and graphics, page 1.

1OH Switch now to HIRES (page 1, mixed by previous
condition.)

10T (Go back to page 1l text mode.)
102 (Take a peek at page 2.)

101 (Go back again to page l.)

-49-

CONNECT AND DELETE SYMBOL TABLES: K ae or -K

This command has three forms as follows:

K ae Connect a list of symbols at "ae
onto the end of the table.

KM Connect a Merlin symbol table. The Merlin
symbol table must be present (see MAB and
Merlin)

-K Delete the entire symbol table.

The symbol table 1is composed of any number of
symbol 1lists. Each list is composed of any number of
symbol entries. Each symbol entry consists of two bytes
of symbol value, in the normal 6502 order low byte, high
byte; one byte defining the length of the symbol, and
followed by the name, which is made up of ASCII
characters terminated with a byte of zero. A list is
terminated by a symbol value of zero and name of zero
length. (ie. four “0”s). In addition, the first charac-
ter of a symbol name must be an alpha character and the
last character must be an alpha or numeric character.

NOTE: If you are ever inclined to modify a table
directly in memory, such as with the Substitute command,
the table MUST be disconnected with a “-K”° command
first. Reconnect the table when you have completed the
modifications.

There are three general types of symbols. These
are LABEL, DATA, and INDIRECT symbols.

A LABEL is a symbol which identifies a pure memory
location, such as the beginning of a routine or a
hardware byte, such as the keyboard location ($C000).
It”s length byte in the symbol table is “0~.

A DATA symbol has a length of 1-127 associated with
it, and denotes a part of memory that contains actual
data. An example might be a part of memory that
contains either a vector, pure data, or even a string.
The length byte in the symbol table must have the high
bit clear (bit 7 = 0) to denote this type of symbol.

-50-

An INDIRECT symbol is wused to designate a pair of
zero page bytes that point to another location in
memory, such as would be used by an indirect addressing
operation (i.e. LDA (PTR),Y). An "at” (@) sign is used
when specifying this type of label instead of the
shift-N (°). The length of the data field pointed at by
the indirect symbol can be in the range of 1 to 127. An
indirect symbol is defined by having the high order bit
(bit 7) of its length byte set.

For more information regarding the use of the
symbol table please see the "Y" command. The following
listing illustrates the data structure of the symbol
table itself, and the use of the “K” command.

Examples:
Assume that the following code resides on the

default drive as TESTSYMBOLS. (Such a file 1s present on
the MAB diskette.)

1100:A91E BEGIN LDA #S1E

1102:8506 STA $06
1104:A911 LDA #$11
1106:8507 STA $07 ;PTR($06,07)=111E
1108:A000 LDY #$00
’
110A:B106 LoopP LDA ($06),Y ; (PTR),Y
110C:8D1D11 STA MEMORY
110F :20EDFD JSR $FDED
1112:AD1D11 LDA MEMORY
1115:C98D CMP #$8D ; <CR>
1117:F003 BEQ DONE
1119:C8 INY
111A:DOEE BNE LOOP
111C:60 DONE RTS
111D:00 MEMORY HEX 00 ;MEMORY LOCATION
111E:D4C5D3 STRING ASC "TEST" ; TEST STRING
1122:8D HEX 8D ; TERMINATOR

51

1123:0011
1125:00
1126:C2C5C7
112B:00

112C:0All
112E:00

112F:CCCFCF
1133:00

1134:0600
1136:85

1137:D0D4D2
113A:00

113B:1D11
113D:01

113E:CDC5CD
1144:00

1145:0000
1147:00
1148:00

TABLE

DA

HEX
ASC
HEX

DA
HEX

ASC
HEX

‘DA

HEX

ASC
HEX

DA
HEX

ASC
HEX

HEX
HEX
HEX

BEGIN sDEFINE SYMBOL
00 ;LENGTH = "0~
"BEGIN" ;s CHARACTERS OF NAME
00 sTERMINATOR = “0°
LOOP sDEFINE SYMBOL
00 sLEN = 0
;LABEL SYMBOL
"LOOP" ;s NAME
00 s TERMINATOR
PTR sDEFINE SYMBOL
85 ;LEN = 5 + HIGH BIT
s INDIRECT SYMBOL
"PTR" ; NAME
00 ; TERMINATOR
MEMORY sDEFINE SYMBOL
01 sLENGTH = 1
;s DATA SYMBOL
"MEMORY" ;NAME
00 ; TERMINATOR
0000 s SYMBOL ADDR = 0
00 ;LENGTH = 0
00 ;NO NAME (0)

-52-

Read in TESTSYMBOLS
IBLOAD TESTSYMBOLS

Call the routine to see what it does:

1C1100
TEST {routine prints the word "TEST"}

First let”s see how the code would ordinarily
disassemble:

1L1100,1122

1100 A9 1E LDA #$1E
1102 85 06 STA $06
1104 A9 11 LDA #$11
1106 85 07 STA $07
1108 A0 00 LDY #$00
110A Bl 06 LDA ($06),Y

110C 8D 1D 11 STA $111D
110F 20 ED FD JSR $FDED
1112 AD 1D 11 LDA $111D

1115 C9 8D CMP #$8D
1117 FO 03 BEQ $lllC
1119 c8 INY
111A DO EE BNE $110A
111C 60 RTS
111D 8D D4 C5 STA $C5D4
1120 D3 272
1121 D4 272

1122 8D 00 11 STA $1100

And check the symbol table to see if there”s anything
there:

'Yy
!{no table present}

Connect the symbol table in TESTSYMBOLS to the debugger

!K 1123 {THE SYMBOL TABLE BEGINS AT 1123}

-53-

Display all of the symbols in the symbol table

'Y
1100 BEGIN
110A LooP

0006@5 PTR
111D"01 MEMORY

Examine the contents of the data symbols:

1Yy
PTR@
111E: D4 C5 TE
1120: D3 D4 8D ST.
MEMORY
111D: 8D .

These symbols will be displayed during Assemblies,
Substitutions, Dumps, Dissassembly, and Pass Pointers.
Following is an example of a dissassembly (with symbols)
of TESTSYMBOLS.

1L1100,1122
BEGIN
1100 A9 1E LDA #$1E
1102 85 06 STA $06 PTR
1104 A9 11 LDA #3511
1106 85 07 STA $07
1108 A0 00 LDY #$00
Loop
110A Bl 06 LDA ($06),Y PTR

110Cc 8D 1D 11 STA $111D MEMORY
110F 20 ED FD JSR $FDED
1112 AD 1D 11 LDA $111D MEMORY

1115 €9 8D CMP #$8D
1117 FO0 03 BEQ $111C
1119 c8 INY
111A DO EE BNE $110A LOOP
111C 60 RTS
MEMORY
111D 8D D4 C5 STA $C5D4
1120 D3 272
1121 D4 272
1122 8D 00 11 STA $1100 BEGIN {false

assignment}

~54—

We can also delete the symbol table and then
display the results.

1-K
Y

{No Symbols...}

In general then, any table which has been con-
structed in, or loaded into memory can be connected to
MAB“s symbol table. This can be very useful when
debugging programs of a large size where one cannot keep
track of all the various subroutines and entry points.

If your assembler supports conditional assembly,
one technique is to create the symbol table in the
initial writing and debugging stages. Once the code is
operational, the flag can be set “"false" to suppress
table generation in the final assembly.

-55-

DEFINE, DISPLAY AND MODIFY SYMBOLS:

Y<" or @ length>
or
Yname
or
Yname,ael<" or @ length><,ae2>

This command allows definition, display and modifi-
cation of symbols in the symbol table. Notice that
symbols can have an. associated length. The 1length
parameters are specified with a (*) shift-N on the II
or a shift-6 on the //e. This defines what is called a
DATA SYMBOL, that is a name associated with a block of
data somewhere. Symbols modified with an at sign (@)
length parameter are called INDIRECT LABELS and have the
advantage that data displayed will be in terms of where
the two byte pair POINTS TO, not what they themselves
contain. The length specified tells MAB how long the
data field pointed to is.

Y Display the entire symbol
table.
Y® (or just °°7) Display the locations

pointed to by the symbols
which have length bytes not
equal to zero.

Y-length Change the length field in
every symbol to "length”.
Length must be a byte.

Yname Display and allow
modification of the symbol
with the name of "name”.

The debugger will display
the current value, length
and allow modification of
either or both the value and
the length.

-56-

Yname,ael<"or@length><,ae2> Define a new symbol with the

Examples:

name of "name” the value of
"ael” and the length of
"length”. The "ae2” value
is a location that defines
where to store the symbol
data. ae2 is required if
this is the first symbol you
have defined. If a table
already exists, ae2 is
optional, and is to be used
only when you want the
symbol to be placed
somewhere distinctly differ-
ent than the end of the
current table.

Assume that the following code resides on the
default drive as TESTSYMBOLS. (Such a file 1s present on
the MAB diskette.)

1100:A91E
1102:8506
1104:A911
1106:8507
1108:A000

110A:B106
110C:8D1D11
110F:20EDFD
1112:AD1D11
1115:C98D
1117 :F003
1119:C8
111A:DOEE
111C:60

111D:00
111E:D4C5D3
1122:8D

1123:0011
1125:00
1126:C2C5C7
112B:00

BEGIN

5
LOOP

DONE

’
MEMORY
STRING

>
TABLE

LDA
STA
LDA
STA
LDY

LDA
STA
JSR
LDA
CMP
BEQ
INY
BNE
RTS

HEX
ASC
HEX

DA

HEX
ASC
HEX

#$1E

$06

#$11

$07 ; PTR($06,07) = 111E
#$00

($06),Y ;(PTR),Y

MEMORY

$FDED

MEMORY

#3$8D ; <CR>

DONE

LOOP

00 ;MEMORY LOCATION
"TEST" s TEST STRING

8D s TERMINATOR

BEGIN sDEFINE SYMBOL

00 ;LENGTH = “0°
"BEGIN" ;CHARACTERS OF NAME
00 ; TERMINATOR = "0~

-57-

112C:0Al1
112E:00

112F :CCCFCF
1133:00

1134:0600
1136:85

1137 :DOD4D2
113A:00

113B:1D11
113D:01

113E:CDC5CD
1144:00

1145:0000

1147:00
1148:00

Read in TESTSYMBOLS

DA
HEX

ASC
HEX

DA
HEX

ASC
HEX

DA
HEX

ASC
HEX

HEX
HEX
HEX

!BLOAD TESTSYMBOLS

LOOP sDEFINE SYMBOL
00 sLEN = 0
s LABEL SYMBOL
"LOOP"” ;NAME
00 ; TERMINATOR
PTR sDEFINE SYMBOL
85 sLEN = 5 + HIGH BIT
;s INDIRECT SYMBOL
"PTR" ;s NAME
00 ;s TERMINATOR
MEMORY sDEFINE SYMBOL
01 sLENGTH = 1
;sDATA SYMBOL
"MEMORY" ; NAME
00 s TERMINATOR
0000 s SYMBOL ADDR = 0O
00 ;LENGTH = 0
00 ;NO NAME (0)

And run the program to set up the INDIRECT SYMBOLS:

1C 1100
TEST

Then connect the symbol table in TESTSYMBOLS to MAB

'K 1123

{the symbol table starts at 1123}

Display all of the symbols in the symbol table

Y
1100 BEGIN
110A LOOP

0006@05 PTR
111D701 MEMORY

-58-

Add COUT (FDED) as a new symbol to the symbol table.
This symbol refers to a routine in the Monitor and is
referenced at 110F of the TESTSYMBOLS routine.

'Y COUT,FDED
Display all of the symbols in the symbol table

'Y

1100 BEGIN
110A LOoopP
0006@05 PTR
111D"01 MEMORY
FDED COuT

Add DONE as a new symbol to the symbol table. This
symbol will be located at the RTS instruction of the
LOOP subroutine.

'Y DONE,111C

Modify DONE to be at the BEQ instruction in the LOOP
subroutine and then display the symbol table.

!Y DONE
111C DONE<1117

'Y
1100 BEGIN
110A LOOP

0006@05 PTR
111D"01 MEMORY
FDED cout
1117 DONE

We can also define a new 1list somewhere else in
memory. Here we will define ASYM with a value of 1180
and a length of 5 at 2000 and then display the entire
symbol table.

'Y ASYM,118075,2000

'Y

1100 BEGIN
110A LOOP
0006@05 PTR
111D°01 MEMORY
FDED couT
1117 DONE
1180705 ASYM

..59_

Display the memory area of the symbols which have
non-zero lengths.

1y
PTR@
111E: D4 C5 TE.
1120: D3 D4 8D ST.
MEMORY
111D: 8D .
ASYM
1180: 01 02 03 04-05

Change all of the symbol table lengths to 1
Y"1

1Y {display the results}
1100701 BEGIN

110A"01 LOOP

0006°01 PTR

111D"01 MEMORY

FDED"01 COUT

1117701 DONE

1180701 ASYM

Change the value and length of ASYM to 1300 and 2

1Y ASYM
1180°1 ASYM<1300°2

-60-

>> TECHNICAL NOTES <X

I. HOW MAB BOOTS

When MAB is BRUN it loads at location 1000 which is
where execution begins. The routine at 1000 then
relocates MAB between DOS and the DOS buffers. The
buffers are then rebuilt. MAB stacks itself below
anything already between the DOS buffers (ie. PLE or
MAB if it is already there). This makes MAB fairly
permanent .

II. MAB MEMORY MAP FOR A 48K APPLE

ADDRESS: USE:

0000..0018 ;s UNUSED BY MAB

001A..001D s TEMPORARIES USED BY MAB (Default
;may be changed with CONFIGURE.MAB)

001E..0021 sUNUSED BY MAB

0022 sTOGGLED BY “W” COMMAND ($00<=>$0C)

0023..0039 ;UNUSED BY MAB

003A..003B sASSUMED BY MAB TO CONTAIN THE USER
;s PROGRAM COUNTER AFTER A BREAK
s INSTRUCTION

003C. .0044 ;sUNUSED BY MAB

0045..0049 sASSUMED BY MAB TO CONTAIN THE USER
sREGISTERS AFTER A BREAK INSTRUCTION

004A..004B ;sUNUSED BY MAB

004C. .004D ;ASSUMED TO CONTAIN THE INTEGER BASIC
sHIMEM ADDRESS

0073..0074 sASSUMED TO CONTAIN THE APPLESOFT
sHIMEM ADDRESS

0075. .00FF ;UNUSED BY MAB

0100. .012F ;sDEFAULT MAB STACK AREA

0130. .01FF ;sUSER STACK AREA

0200. .03EF sOPERATING SYSTEM AREA, UNUSED BY MAB

03F0..03F2 sBREAK JUMP VECTOR USED BY MAB TO

; HANDLE BREAK INSTRUCTIONS

..61_

03F3..03F7 ;OPERATING SYSTEM AREA, UNUSED BY MAB

03F8..03FA ;CONTROL Y JUMP VECTOR SET FOR THE
:MAB ENTRY POINT

03FE. .07FF ;OPERATING SYSTEM AREA, UNUSED BY MAB

0800. .7000 ;FREE AREA USED BY DOS, APPLESOFT,...
;MAB LOADS HERE INITIALLY

7001..76FF ; THREE DOS BUFFERS (LESS IS SMALLER)

7700. .9CFF :MAB PROGRAM AFTER RELOCATION.

9D00. .BFFF ;DOS 3.3

€000. .CFFF ; INPUT/OUTPUT AREA

D00O. .FFFF ; ROMS OR LANGUAGE CARD

III. USE OF MAB CONFIGURE.A

The program MAB CONFIGURE.A allows you to configure
MAB or SMAB to use any 4 consecutive bytes of page zero.
The default area is 1A through 1D. Another area which
is not used is 6 through 9. In any case, you can define
any area between 0 and FC (252 decimal) for use by MAB
or SMAB. If your program 1is called by an Applesoft
program and does not use Hi-Res graphics,you can also
use the graphics registers at $D0-$D5 or $EO-$EA.

This program also allows you to to configure
MAB.DOOO to wuse any 1C (28 dec.) consecutive bytes of
page zero. The default area is E&4 through FF. Since
MAB.DOOO resides in the Language Card no BASIC may be
running at the time so areas used by the BASIC may be
used by MAB.DO0O. To use MAB CONFIGURE.A, run the
program and follow the instructions.

IV. REMOVING MAB FROM MEMORY

With MAB now between the DOS buffers, it is
virtually impossible to remove without the Control-Z
command . Therefore, remember to remove MAB when done.
An “FP” will not be sufficient, as it was on the older
version of MAB. If you do get out of MAB and can’t
remember how to re-activate it with a CALL or Control-Y
so as to be able to use the Control-Z to remove it,
you”ll have to re-boot to restore DOS.

-62-

V. MAB AND THE DOUBLE TIME ROM

For those people with the Doubletime Printer F8
ROM installed 1in their computer, MAB will not function
properly wunless the IRQ vector 1is set differently.
($3FE = $43, $3FF = $FA). It 1is suggested that the EXEC
file "DOUBLETIME ROM PATCH" on the MAB diskette be used
(i.e. 1insert MAB disk and type in EXEC DOUBLETIME ROM
PATCH), to properly set the IRQ vector for those with
DOUBLE TIME machines.

VI. USE OF HANDYSYM.5000

HANDYSYM is a prefabricated symbol table of a few
useful labels which may come in handy when creating
object code using MAB“s mini-assembler. To connect the
symbol table, BLOAD HANDYSYM.5000, and then type in
K5000. The symbols provided are as follows (subject to
change):

'Y

FBDD BELL {print CHRS$(7) character}

5000 COUT {gen”1l purpose output }

co61 PBO {loc to read pushbotton #0}

FB1E PREAD {read paddles - LDX with paddle # }
FCA8 WAIT {wait for value proportional to acc.}
03F5°03 AMPER {ampersand vector}

03F8°03 CTRLY {control-Y vector}

03F2°03 RESET {reset vecor}

€000 KYBD {keyboard location}

co10 STRB {kybd strobe location}

€030 SPKR {speaker location}

FC58 HOME {clear screen and HOME cursor}
AA60°02 BLEN {length of last BLOAD}

AA72°02 BADR {address of last BLOAD}

For example, with HANDYSYM.5000 connected, the
following operations could be done:

'C.HOME {clears screen}

1A300 {enters assembler}
300 LDA #"A {load acc. with "A" character}
302 JSR .COUT {print it}
305 RTS {routine is done}

306 <RETURN> {exit MAB assembler}

-63-

MAB AND MERLIN

While MAB and MERLIN are two separate RWP products,
it has been anticipated that they will be wused in
conjunction with one another. The following section
deals with their interaction and should help the user to
anticipate the few incompatibilities between the two RWP
programs.

As mentioned before it 1is possible to connect a
MERLIN symbol table to MAB by simply typing KM from MAB.
This works fine, but only if a MERLIN symbol table is
present. If the Language Card RAM has been initialized
then MAB may act unexpectedly, while an uninitialized
Language Card will hang the system.

MERLIN symbol tables are more convenient, however,
they are not as versatile as one”s created especially
for MAB. Specifically, the length associated with the Y
command cannot be used with the MERLIN symbol table.

A final note about using MERLIN and MAB in memory
together. If the program is a large one that resides in
low memory then MERLIN can be Quit and MAB.DOOO can be
BRUN. This will erase MERLIN on the Language Card and
replace it with MAB, but the generated symbol table will
remain. This is only valid when the program does”t call
ROM routines other than in the F800-FFFF area.

It is also possible to have both MERLIN and MAB in
memory at the same time. It should be noted that the
normal area that MERLIN generates its object code is at
$8000 and MAB normally resides in this space. It is
therefore first necessary to move MERLIN"s HIMEM: down,
so that MAB will be protected, and also to ensure that
when assembling, object code is generated. The example
that follows should be helpful. Just remember where all
the pileces sit in memory and be careful that one
program doesn”t step on another program”s space.

To start, BRUN MERLIN, then quit with MAB"s "Q"
command .

Then BRUN MAB
MAB VER 2.6 (C) 1983 WINK SAVILLE

NEXT END
0800 7000

6[‘

Quit MAB with the Quit commend.

'Q
TO REENTER MAB —- CALL %30467

Write down this number. When entering MERLIN with
the ASSEM command the Control-Y vector is rewritten to
enter MERLIN. That means this call, or the equivalent
from the monitor (7703G), is the only way to get back

into MAB.
ASSEM

This will reenter MERLIN. This can be done direct-
ly from MAB but remember to Quit the first time, so the
call address to return can be noted.

Once back to MERLIN, go to the EDITOR and type a
new value for HIMEM:. This is so MERLIN will generate
object code. You can pick any amount of space you want,
just remember that the maximum size source file will be
smaller. In our case we”ll reserve 8K for our object
code.

In most circumstances, the end of available memory

with both MERLIN and MAB 1installed will be $8800. Thus
to set aside 8K, we should type in:

HIMEM: $6800 {from MERLIN}

Then load the source file MERLIN SYM EX.S from the
MAB disk and assemble it.

65

ASM

1 * MERLIN SYMBOL TABLE DEMO

2 *

3 CouT EQU $FDED

A *
6800: A0 00 5 START LDY #0
6802: B9 13 68 6 PRMSG LDA MESSAGE,Y
6805: 10 06 7 BPL LASTCHR
6807: 20 ED FD 8 JSR COUT
680A: C8 9 INY
680B: DO F5 10 ’ BNE PRMSG
680D: 09 80 11 LASTCHR ORA #$80
680F: 20 ED FD 12 JSR COUT
6812: 60 13 RTS

14 %

6813: D3 D9 CD 15 MESSAGE ASC "SYM TEST"
6816: A0 D4 D5 D3 D4

681B: OD 16 HEX OD s <CR>
--End assembly--
28 bytes

Errors: O

Now Quit MERLIN
From BASIC type:

CALL 30467 {This should be the call address printed
by MAB when MAB was quit initially.}

KM {Back in MAB connect MERLIN symbol table.}
'Y {List symbol table}
FDED COuT

6800 START

6802 PRMSG

680D LASTCHR

6813 MESSAGE

1-K {disconnect symbol table}

Y {ho symbols}

-66—

KM {reconnect symbol table}

'L .START, .MESSAGE {LIST PROGRAM}
START

6800 AO 00 LDY #$00
PRMSG

6802 B9 13 68 LDA $6813,Y MESSAGE
6805 10 06 BPL $680D LASTCHR
6807 20 ED FD JSR $FDED CcouT
680A C8 INY

680B DO F5 BNE $6802 PRMSG
LASTCHR ‘

680D 09 80 ORA #$80

680F 20 ED FD JSR $FDED COUT
6812 60 RTS
MESSAGE

6813 D3 2?7

!D .MESSAGE, .MESSAGE+9 {DUMP MESSAGE}
MESSAGE

6813: D3-D9 CD AO D4 SYM T

6818: C5 D3 D4 OD FF EST..

It 1is possible to switch back and forth between
MERLIN and MAB but be sure to have a back up of the
source as it may or may not be necessary to reload the
source file each time MERLIN is re-entered. Remember
that when things get really fouled up to re-boot and if
necessary BRUN LOAD ASM as MERLIN most likely will not
reload itself onto the Language Card from a boot or
BRUN of MERLIN itself.

-67-

The following chart is a comparative memory map of
the Apple showing memory allocation with MERLIN alone
installed, and with both MERLIN and the standard version
of MAB in memory.

MEMORY MAP MEMORY MAP
MERLIN ONLY MERLIN + MAB
(RAM CARD VERSION) (RAM CARD VERSION)
SFFFF 65535 SFFFF 65535
MERLN MERUN
(D Bank 2) (D Bank 2)
D000 e 53248 0000) 53248
NORMAL SYMBOL TABLE NORMAL SYMBOL TABLE
sooco O {Dbank b 53248 soooo [(D Bank 1) 53248
SCFFF 53247 SCFFF 53247
APPLE I/O APPLE I/O
“SOFT SWITCHES" “SOFT SWITCHES"
sC000 [49152 sco00 [49152
SBFFF 49151 SBFFF 49151
DOS DOS
—s0853 [1 Sufier 38995
9852 [(Excess Symbol Table , | 377
o From Ram Card) f @)
FREEISPACE $7001 Bufters 28673
$7001 TBaoess Symb0l obve 28672
OBJECT CODE sm—e Fom ko oy~
MERUN HIMEM: (SC.D) i $8000 |1 32768 FREE SPACE
OBJECT CODE —f
8] p—— —a¥ss000 0 24576
SOURCE FILE = URCCTIE 1
BEG. OF SOURCE == 5901 L1 2305 — 5501 2305
(SAB)
SBFF 2303 SBFF 2303
FREE SPACE FREE SPACE
$840] 228 . s8A0 [2228
MISC. USE MISC. USE
ss00 (1. BY MERUN 2048 s800 O BY MERLIN o028
SRR 2047 STFF 2047
SCREEN MEMORY SCREEN MEMORY
00 [1 1024 =l 1024
% FACES 400 N
5300 J_nggﬁﬂus__ 976 3300 D_Mu;%gsms__ 976
$300 1 USER SPACE 768 300 [1 USER SPACE 768
PAGE 2 PAGE 2
w200 [(Input Bufter) 510 s200] (Input Bufter) 50
PsA“?E |(l) PAGE |
cl Stack;
s100 [1 s 256 s100 [{) 256
PAGE 0 PAGE 0
= (S60.6F UNUSED) -—
o (Misc. Pointers) 0 w0 (Misc. Pointers) 5

*with MAB installed, user must manually reset Medin's HIMEM:

>> QUICK REFERENCE CARD <<

This chart is intended to provide a quick reference
list of MAB commands. The commands are arranged alpha-
betically and the page number of the manual reference
on each command is listed.

Command Description Page

A <ae> ASSEMBLE 6502 MNEMONICS 38
<RETURN> alone to quit.
"~"' to back up one instr.
A 300
A .LABEL
A %768

B ael,ae2,ae3,ae4 BLOCK SEARCH OF MEMORY 44
ael,ae2 = block to search
ae3,ae4 = addr. of data to
search for.

B 1000,2000,300,304

B .LABEL, .LABEL+1000, .BUFFER, .BUFFER+2

C <ae> CALL A SUBROUTINE 28

C 300
C.HOME

D <"or“><ael><,ae2> DUMP MEMORY 39

D 300
D .LABEL
D 300,320

F ael,ae2,v FILL MEMORY WITH A VALUE 43
ael,ae2 beg,end of range
. v = value to fill with.
F 300,305,0
F .ENTRY, .END,FF

G ael<{,ae2><,ae3><,ae4> GO WITH BREAKPOINTS

G 300

G 300,302,305,307

ael address to start at
ae2—-ae4 = optional breaks

G .ENTRY,.LOOP, .CHK, .END

29

K ae or =K CONNECT/DELETE SYMBOL TABLE 50
K 5000
-K
L <ael><,ae2> DISASSEMBLE MEMORY 12
ael ,ae2 = start,stop
L 5000
L 5000,5050
L .ENTRY
L .BEG,.END
M ael,ae2,ae3 MOVE MEMORY BLOCK 42
ael ,ae2 = beg, end of block
ae3 = destination
M 300,305,1000
M .BEG,.END,.DEST
N <ael><,ae2> NEXT INSTRUCTION <skips JSR"s> 21
ael = # of instructions
ae2 = address to trace
N 1,1100
N
N 3
N ,1100
0 <L/H>XG/T>X{M/F><1/2> OTHER SCREEN DISPLAY 49

[eNeNe]

Nh—]§
-

L/H = Lo-Res/Hi-Res

G/T = Graphics/Text
M/F = Mixed/Full
1/2 = Page 1/Page 2

P <ae{,cnt>>
or

PASS POINTERS " 31

P ae @ addr.
ae = address of pointer
cnt = pass counter
@ addr = addr. of check routine
P 300,1
P 300
-P
Q QUIT MAB 26
S <ae> SUBSTITUTE MEMORY 41
<"." to exit>
S 300
S .LABEL

T <ael><,ae2>

T 1,1100
T

T 3

T ,1100

TRACE A PROGRAM 14
ael = # of instructions
ae2 = address to trace ’

U <ael><,ae2>

U 1,1100
U

U3

U ,1100

UNTRACE A PROGRAM 20
ael = # of instructions
ae2 = address to trace

V ael

V 300
vV %2768

CONVERT A NUMERIC VALUE 46

W <ael> FREEZE TOP WINDOW 47
ael = # of lines to freeze

W

W5
X <register> EXAMINE A REGISTER 22
X {all registers}

XA {accumulator}

XX {X register}

XY {Y register}

XP {program counter}

XC {column display}

XD {display data= T or F}
XS {stack}

XM {MAB“s stack}

Flags: C)arry N)egative Z)ero D)ecimal I)RQ

Y SYMBOL TABLE MANIPULATION 56

Y name,ael<"length or @addr><,ae2>
Y name
Y <“length or @addr.>

YPTR,6°2,5000 {define PTR=6 with len=2
in new table at 5000}
YPTR {show value of PTR}

ware

{display all non-zero
length symbols}
Y {display table names}

Y® or just

~z PERMANENTLY LEAVE MAB (ZAP) 5

Munch-A-Bug (MAB) is a 6502 program
which assists the user in trouble-
shooting 6502 assembly language
programs by actually running them in a
controlled manner. As the program is
run, each program step is displayed,
along with all 6502 registers, and
optional memory points as defined by
the user.

This allows you to easily see exactly what
occurs at each stage during a program,
and quickly find any errors in the code.
MAB is a professional programming
tool, published by Roger Wagner
Publishing, Inc., a software company
specializing in utility programs for the
Appie [I.

MAB uses only four zero page locations,
and these are definable by the user, so
there is never any conflict with a user's
program. in addition, MAB includes its
own mini-assembler, so minor patches
to code can be made, right at debugging
time, without having to re-run your
assembler. MAB even supports the use
of labels and strings!

MAB also supports such unique features
as its “pass pointers”. These allow the
user to define a point in memory which
can be flagged with a set number of
“passes’. At each pass the 6502
registers will be displayed. On the nth
pass, MAB stops in the trace mode to
further examine the routine in detail.
MAB also has a “functional pass pointer”,
wherein a machine language subroutine
can be executed at each pass, without
affecting the main program (memory
of registers). This is useful for performing
various tests as to the status of the main
program. By setting a special return flag,
MAB will “pop up” in the trace mode
only under certain conditions. These

By Wink Saville

™

features mean you can easily trace
machine language routines linked to
Applesoft programs.

Munch-A-Bug’'s commands include:

A) Assemble 6502 “source code”.
C) Call a subroutine.
D) Dump memory in both hex

and ASCIL

F) Fill memory with a value.

G) Call a subroutine with breakpoints
("Go").

K) Connect or delete symbol table.
L) Disassemble 6502 code (“List™).
M) Move memory.

N} Trace next instruction, but don't

display JSR's.

O) “Other” screen display: TEXT, GR
or HGR.

P) Display, set, or delete pass
pointers.

Q) Quit.

S) Substitute values into a memory
range.

T) Trace a 6502 program.

U) “Untrace”. Steps through with no
display, but with option of
keyboard start/stop/end.

V) Convert between Hex and
Decimal numbers.

X) Examine and/or modify 6502
registers.

Y) Define, display, or modify symbols
(labels).

MAB screen displays are formatted at
user discretion to either 40 or 80 column
modes. MAB can also relocate to any
location, including a 16K RAM card, for

SYSTEM REQUIREMENTS:

48K Apple 11, 1i+, ile with DOS 3.3

R E PU[SLC,5 INC. _

maximum versatility.

ISBN 0-927796-07-4

	Munch A Bug
	Table of Contents
	Introduction
	MAB Commands
	Terms Used In This Manual
	Tracing Commands
	List (Disassemble Memory)
	Trace a 6502 Program
	Untrace a 6502 Program (No Display)
	Next Instruction (Skip JSR's)
	Examine 6502 & MAB Registers
	Quit MAB
	Zap MAB

	Execution Commands
	Call Subroutine
	"GO" (breakpoint Setting)
	Pass Pointers

	Memory Manipulation Commands
	Assemble 6502 Mnemonics
	Dump Memory
	Substitute Data into Memory
	Move Memory
	Fill Memory with a Value
	Block Search

	Additional Features
	Convert Numbers: Hex/Dec
	Freeze Display Window to Save Data
	Other Screen Displays
	Connect/Delete Symbol Tables
	Define, Display & Modify Symbols

	Technical Notes
	How MAB Boots
	MAB Memory Map for a 48K Apple
	Use of MAB CONFIGURE.A
	Removing MAB from Memory
	MAB & The Double Time ROM
	Use of HANDYSYM.5000
	MAB & Merlin

	Quick Reference Card
	Back Cover

